The Stirling numbers of the second kind obey the following recursive formula $$\left\{\begin{array}{c}n+1\\r\end{array}\right\}=\left\{\begin{array}{c}n\\r-1\end{array}\right\}+r\cdot \left\{\begin{array}{c}n\\r\end{array}\right\}$$

with the initial conditions $$\begin{align}\left\{\begin{array}{c}n\\n\end{array}\right\}&:=1,\quad n\ge 1\nonumber\\\left\{\begin{array}{c}n\\r\end{array}\right\}&:=0,\quad r=0 < n\text{ or }n < r.\nonumber\end{align}$$

| | | | | created: 2020-04-04 12:18:44 | modified: 2020-04-04 12:21:26 | by: *bookofproofs* | references: [8404]

[8404] **Miller, Kenneth S.**: “An Introduction to the Calculus of Finite Differences And Difference Equations”, Dover Publications, Inc, 1960