A fundamental concept in the theory of ordinal numbers is a *transitive set*, which we want now to introduce formally:

A **transitive** set \(Z\) is one in which the following implication is always fulfilled:

$$x\in y\wedge y\in Z\Longrightarrow x\in Z,$$

i.e. if $x$ is element of $y$ and $y$ is element of $Z$, then $x$ is also an element of $Z.$ This is equivalent to the following: If $y\in X$, then $y\subseteq X$ (i.e. every element $y$ of $Z$ is also its subset).

Because of the axiom of foundation, by which no set can contain itself, we can even require that $y$ is a proper subset of $Z,$ and the definition of a transitive set can then be written as follows:

$$y\in Z\Longrightarrow y\subset Z.$$

| | | | | created: 2014-06-28 13:41:46 | modified: 2019-03-02 21:25:20 | by: *bookofproofs* | references: [656]

[656] **Hoffmann, Dirk W.**: “Grenzen der Mathematik – Eine Reise durch die Kerngebiete der mathematischen Logik”, Spektrum Akademischer Verlag, 2011