Welcome guest
You're not logged in.
305 users online, thereof 0 logged in

A fundamental concept in the theory of ordinal numbers is a transitive set, which we want now to introduce formally:

Definition: Transitive Set

A transitive set \(Z\) is one in which the following implication is always fulfilled:

$$x\in y\wedge y\in Z\Longrightarrow x\in Z,$$

i.e. if $x$ is element of $y$ and $y$ is element of $Z$, then $x$ is also an element of $Z.$ This is equivalent to the following: If $y\in X$, then $y\subseteq X$ (i.e. every element $y$ of $Z$ is also its subset).

Because of the axiom of foundation, by which no set can contain itself, we can even require that $y$ is a proper subset of $Z,$ and the definition of a transitive set can then be written as follows:
$$y\in Z\Longrightarrow y\subset Z.$$

| | | | | created: 2014-06-28 13:41:46 | modified: 2019-03-02 21:25:20 | by: bookofproofs | references: [656]

1.Corollary: Properties of Transitive Sets

2.Lemma: Any Set is Subset of Some Transitive Set - Its Transitive Hull

Edit or AddNotationAxiomatic Method

This work was contributed under CC BY-SA 4.0 by:

This work is a derivative of:

Bibliography (further reading)

[656] Hoffmann, Dirk W.: “Grenzen der Mathematik – Eine Reise durch die Kerngebiete der mathematischen Logik”, Spektrum Akademischer Verlag, 2011