Welcome guest
You're not logged in.
190 users online, thereof 0 logged in

The following proposition demonstrates the division with quotient and remainder we have introduced already provides an equivalent possibility to define congruences.

Proposition: Congruences and Division with Quotient and Remainder

Let $m > 0$ be the positive integer being the divisor in the division with quotient and remainder of two integers $a,b\in\mathbb Z:$

$$\begin{array}{rcll}
a&=&q_am+r_a&0\le r_a < m,\\
b&=&q_bm+r_b&0\le r_b < m.
\end{array}$$

Then $a$ is congruent to $b$ if and only if they have the same remainder, formally
$$a\equiv b(m)\Longleftrightarrow r_a=r_b.$$

| | | | | created: 2019-04-10 21:28:19 | modified: 2019-06-20 08:16:56 | by: bookofproofs | references: [1272], [8152]

1.Proof: (related to "Congruences and Division with Quotient and Remainder")


This work was contributed under CC BY-SA 3.0 by:

This work is a derivative of:

(none)

Bibliography (further reading)

[8152] Jones G., Jones M.: “Elementary Number Theory (Undergraduate Series)”, Springer, 1998

[1272] Landau, Edmund: “Vorlesungen ├╝ber Zahlentheorie, Aus der Elementaren Zahlentheorie”, S. Hirzel, Leipzig, 1927

FeedsAcknowledgmentsTerms of UsePrivacy PolicyImprint
© 2018 Powered by BooOfProofs, All rights reserved.