Let $(X,d_X)$ and $(Y,d_Y)$ be metric spaces. Let \(f:X\mapsto Y\) be a continuous function. If \(X\) is compact, then \(f:X\mapsto Y\) is uniformly continuous.

| | | | | created: 2017-03-13 12:39:54 | modified: 2017-03-13 12:42:52 | by: *bookofproofs* | references: [582]

(none)

[582] **Forster Otto**: “Analysis 2, Differentialrechnung im \(\mathbb R^n\), Gewöhnliche Differentialgleichungen”, Vieweg Studium, 1984