Let $[a,b]$ be a closed real interval, $\mathbb R$ be the set of real numbers and \(f:[a,b]\mapsto \mathbb R\) a continuous function. Then \(f\) is uniformly continuous.

| | | | | created: 2017-03-13 20:07:08 | modified: 2017-03-13 20:12:19 | by: *bookofproofs* | references: [581]

(none)

[581] **Forster Otto**: “Analysis 1, Differential- und Integralrechnung einer VerĂ¤nderlichen”, Vieweg Studium, 1983