Welcome guest
You're not logged in.
281 users online, thereof 0 logged in

Definition: Generating Set of a Group

Let $(G,\ast)$ be a group. For every subset $A\subseteq G$ define $$\langle A\rangle:=\bigcap_{A\subset S\subset G}S$$ as the set intersection of all subgroups $S$ of $G$ containing $A.$

Obviously, $A\subset \langle A\rangle$ and $\langle A\rangle \subset S$ for every subgroup $S$ of $G.$ Therefore, $\langle A\rangle$ is the smallest subgroup of $G$ containing $A.$ We call $A$ the generating set of $\langle A\rangle$ and $\langle A\rangle$ the group generated by $A.$ If $A$ is finite, we write $\langle a_1,\ldots,a_n\rangle.$

| | | | | created: 2019-07-27 21:23:28 | modified: 2019-07-28 10:28:34 | by: bookofproofs | references: [677]

Edit or AddNotationAxiomatic Method

This work was contributed under CC BY-SA 4.0 by:

This work is a derivative of:

Bibliography (further reading)

[677] Modler, Florian; Kreh, Martin: “Tutorium Algebra”, Springer Spektrum, 2013