Let \([a,b]\) be a closed real interval and let \(f:[a,b]\to\mathbb R\) be a continuous real function with $f(a) < 0$ and $f(b) > 0$ (or $f(a) > 0$ and $f(b) < 0$). Then there is a root value $x\in[a,b]$ with \(f(x)=0\).

| | | | | created: 2017-04-17 13:00:31 | modified: 2017-07-31 21:15:48 | by: *bookofproofs* | references: [581]

(none)

[581] **Forster Otto**: “Analysis 1, Differential- und Integralrechnung einer VerĂ¤nderlichen”, Vieweg Studium, 1983