Let \((G,\ast)\) and \((H,\cdot)\) be two groups with the respective identities \(e_G\) and \(e_H\) and \(f:G\rightarrow H\) be a group homomorphism.
We define:
The kernel and the image of $f$ fulfill the following defining properties:
|
|
|
|
| created: 2014-08-28 22:42:23 | modified: 2020-06-26 17:29:10 | by: bookofproofs | references: [696]
[696] Kramer Jürg, von Pippich, Anna-Maria: “Von den natürlichen Zahlen zu den Quaternionen”, Springer-Spektrum, 2013