A complex sequence $(a_k)_{k\in\mathbb Z}$ is called **$n$-periodical**, if there is a positive integer $n\in\mathbb Z$ such that $a_k=a_l$ for all $k(n)\equiv l(n)$, i.e. for all integers $k,l\in\mathbb Z$ being congruent modulo $n.$

| | | | | created: 2019-09-21 08:45:36 | modified: 2019-09-21 08:48:57 | by: *bookofproofs* | references: [8317]

(none)

[8317] **Butz, T.**: “Fouriertransformation für Fußgänger”, Teubner, 1998