Let \(X\) be a random variable of a given random experiment. Assume, we have a random experiment, for which the probability of the event
“\(X\) has a realization equal a given real number \(x\)”,
i.e. the probability \(p(X = x)\) exists for all real numbers \(x\in\mathbb R\).
Then we call the function
\[f:=\cases{\mathbb R\mapsto[0,1]\\x\mapsto p(X=x)}\quad\quad\text{for all }x\in\mathbb R\]
the probability mass function (or (pmf) of the random variable \(X\).
|
|
|
|
| created: 2016-03-25 16:22:59 | modified: 2016-03-25 16:24:14 | by: bookofproofs | references: [1796]
[1796] Hedderich, J.;Sachs, L.: “Angewandte Statistik”, Springer Gabler, 2012, Vol .14