Let \(L\subseteq (\Sigma^*,\cdot) \) be a formal language with strings $s\in L$ formed according to a syntax and let inside a domain of discourse $U,$ a semantics $I(U,L)$, and the valuation $[[]]_I$ be given.

We say that the interpretation $I(U,L)$ **satisfies** (**models**, is **a model of**) an interpretable string $s\in L$, denoted by $$I\models s,$$ if and only if the corresponding valuation is true, i.e.$$[[s]]_I=1.$$

If $I\models s$ for all possible interpretations $I$, then we write $\models s$ and say that $s$ is **valid**. Alternatively, we call $s$ a **tautology**.

We say that the interpretation $I(U,L)$ **does not satisfy** (**does not model**) an interpretable string $s\in L$, denoted by $$I\not{\models} s,$$ if and only if the corresponding valuation is false, i.e.$$[[s]]_I=0.$$

If $I\not {\models} s$ for all possible interpretations $I$, then we write $\not{\models} s$ and say that $s$ is **invalid**. Alternatively, we call $s$ a **contradiction**.

| | | | | created: 2018-02-06 21:38:50 | modified: 2020-05-04 19:44:03 | by: *bookofproofs*

(none)