BranchesHistoryFPLHelpLogin
Welcome guest
You're not logged in.
302 users online, thereof 0 logged in

Definition: Satisfaction Relation, Model, Tautology, Contradiction

Let \(L\subseteq (\Sigma^*,\cdot) \) be a formal language with strings $s\in L$ formed according to a syntax and let inside a domain of discourse $U,$ a semantics $I(U,L)$, and the valuation $[[]]_I$ be given.

Tautology

We say that the interpretation $I(U,L)$ satisfies (models, is a model of) an interpretable string $s\in L$, denoted by $$I\models s,$$ if and only if the corresponding valuation is true, i.e.$$[[s]]_I=1.$$
If $I\models s$ for all possible interpretations $I$, then we write $\models s$ and say that $s$ is valid. Alternatively, we call $s$ a tautology.

Contradiction

We say that the interpretation $I(U,L)$ does not satisfy (does not model) an interpretable string $s\in L$, denoted by $$I\not{\models} s,$$ if and only if the corresponding valuation is false, i.e.$$[[s]]_I=0.$$
If $I\not {\models} s$ for all possible interpretations $I$, then we write $\not{\models} s$ and say that $s$ is invalid. Alternatively, we call $s$ a contradiction.

| | | | | created: 2018-02-06 21:38:50 | modified: 2020-05-04 19:44:03 | by: bookofproofs

Edit or AddNotationAxiomatic Method

This work was contributed under CC BY-SA 4.0 by:

This work is a derivative of:

Bibliography (further reading)

(none)