Welcome guest
You're not logged in.
258 users online, thereof 0 logged in

Proposition: Sum of Möbius Function Over Divisors

For any natural number $n\ge 1$, the sum of the Möbius function over the divisors of $n$ equals $0$ unless $n=1$. Only for this special case the sum equals $1.$ Using the Iverson notation for sums, this can be written as

$$\sum_{d\mid n}\mu(d)=[n=1].$$

| | | | | created: 2019-04-06 08:44:27 | modified: 2019-04-06 18:30:28 | by: bookofproofs | references: [701], [1272]

1.Proof: (related to "Sum of Möbius Function Over Divisors")

Edit or AddNotationAxiomatic Method

This work was contributed under CC BY-SA 3.0 by:

This work is a derivative of:


Bibliography (further reading)

[1272] Landau, Edmund: “Vorlesungen über Zahlentheorie, Aus der Elementaren Zahlentheorie”, S. Hirzel, Leipzig, 1927

[701] Scheid Harald: “Zahlentheorie”, Spektrum Akademischer Verlag, 2003, 3. Auflage