A zero matrix is a matrix \(E\in M_{m\times n}(F)\) of the form
$$
O:=\pmatrix{
0 & 0 & \ldots & 0 \cr
0 & 0 & \ldots & 0 \cr
\vdots & \vdots & \ddots & \vdots \cr
0 & 0 & \ldots & 0 \cr
}
$$
In \(O\), all elements equal \(0\in F\).
As a special case, a zero vector is a vector of the form
$$o=\pmatrix{0\\\vdots\\0},$$
or transposed,
$$o^T=\pmatrix{0,&\ldots,&0}.$$
|
|
|
|
| created: 2014-11-05 21:55:59 | modified: 2020-11-29 07:46:13 | by: bookofproofs | references: [1038]
[1038] Wille, D; Holz., M : “Repetitorium der Linearen Algebra”, Binomi Verlag, 1994