A **zero matrix** is a matrix \(E\in M_{m\times n}(F)\) of the form

$$

O:=\pmatrix{

0 & 0 & \ldots & 0 \cr

0 & 0 & \ldots & 0 \cr

\vdots & \vdots & \ddots & \vdots \cr

0 & 0 & \ldots & 0 \cr

}

$$

In \(O\), all elements equal \(0\in F\).

As a special case, a zero vector is a vector of the form

$$o=\pmatrix{0\\\vdots\\0},$$

or transposed,

$$o^T=\pmatrix{0,&\ldots,&0}.$$

| | | | | created: 2014-11-05 21:55:59 | modified: 2020-11-29 07:46:13 | by: *bookofproofs* | references: [1038]

[1038] **Wille, D; Holz., M **: “Repetitorium der Linearen Algebra”, Binomi Verlag, 1994