Welcome guest
You're not logged in.
319 users online, thereof 0 logged in

Motivation: Burali-Forti Paradox

Historically, the Italian Cesare Burali-Forti (1861 – 1931) discovered that using the Cantor’s definition of a set, we could build the set $\Omega$ of all ordinal numbers. However, this set would lead to the following paradox:

This so-called Burali-Forti paradox remained a paradox until the set theory got a better axiomatic foundation in the form of the Zermelo-Fraenkel axioms. Since then, the Burali-Forti paradox is only a paradox if we insist $\Omega$ to be a set. Today, $\Omega$ is no more considered a set, since it violates one of the Zermelo-Fraenkel axioms, the axiom of foundation.

Also, other paradoxes were discovered in the original Cantor’s set theory, including the Russel’s paradox, but those paradoxes were similarly removed by another Zermelo-Fraenkel axiom, when the Cantor’s principle of comprehension was replaced by the more cautious axiom of separation.

| | | | created: 2014-07-12 21:46:23 | modified: 2020-06-22 21:55:03 | by: bookofproofs | references: [656]

Edit or AddNotationAxiomatic Method

This work was contributed under CC BY-SA 4.0 by:

This work is a derivative of:

Bibliography (further reading)

[656] Hoffmann, Dirk W.: “Grenzen der Mathematik – Eine Reise durch die Kerngebiete der mathematischen Logik”, Spektrum Akademischer Verlag, 2011